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CAVITY EIGENMODES FOR THE NIST/NRL FREE ELECTRON LASER

I. INTRODUCTION

The NIST(formerly NBS)/NRL FEL oscillator powered by a CW 185 MeV

racetrack microtron is currently under constructionI 3 . A simplified

model of the resonator cavity, consisting of the wiggler vacuum chamber

and the two mirrors, is shown schematically in Fig. 1. Since stimulated

emission takes place predominantly along the electron beam path, the

vector potential of the radiation A. is expressed in terms of the free

space eigenmodes AR(r) = Amp (r) exp(-iwt) eMP + cc of the paraxial wave

equation 4 , where emp is the polarization vector,

(r;W) 2 2 )
u (r;W) ik(z + (L2 + y ) i. (z)

A mp(r) (i 2 1/2 e R z) e

b

k = to/c is the wave number and w is the frequency. In Eq. (1) the exponent

ktz + (x 2+y 2)/2R(z)] contains the phase variation on the wavelength scale

X = 2n/k, with spherical wavefronts of curvature 1/R(z) = z/(z 2 + b 2). The

slow phase variation is given by Cmp(z) = (2m + p + 1) tan- (z/b). The

spot size of the radiation envelope is W(z) = w (1 + z2/b2)1 / 2, where the

1/2distance z is measured from the position of the waist w = (2b/k) . The

amplitude squared of the mode drops by 1/2 over a distance equal to the

Rayleigh length b (also known as confocal parameter). Most of the

radiation is confined within a cone parametrized by the dif -. ion angle

1/2ed = W/z = (X/bn) 2 . For given wavelength X, any twu the four

parameters R, W, b, z determine a mode uniquely.

The amplitude profile u mp(r;W) contains the transverse spatial

variation, equivalent to a small kI, perpendicular to the z-direction. In

? 2 1/2
cylindrical coordinates (r,8,z), where tan8 = x/y, r = (x +y')

u mp(r,e;W) takes the form

Manuscript approved June 15, 1989.
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ul (r,e;W) = a p LP(&) e 2

"'i'p Linp6) mW2 2

where + (-) signifies cosine (sine) poloidal dependence, LP(&) are the

associated Laguerre polynomials and the normalizing factor a =mp

2 1/2 -1/2
[i/(l+Spo )!!w2I /[m/(m + p)]1

In the presence of conducting walls the vacuum expansion (1) still

provides the best representation, because (a) the chamber inner radius is

much larger than the radiation spot size and (b) the transit time through

the cavity and the length of the light pulse itself are too short tc allow

multiple reflections on the walls and set up cavity eigenmodes. It can

also be argued that the small fraction of the radiation reflected from the

wall, acting as a perfect conductor for grazing incidence, is lost out of

the resonator. The main effect of the chamber, therefore, comes from the

two edge apertures, where the radiation spot size is maximum. The

resonator is then modeled by a sequence of four optical elements, i.e., two

apertures and two mirrors.

The radiation profile is altered after each encounter with an optical

element. A pure incident mode A mp(r) will, in general, be partially

transformed into different modes. This is caused by the finite size of the

apertures, and, in addition, by spherical aberration and surface

- --a a n a U IN I N ai mum a , ---



imperfections in case of the mirrors. Consider the incoming radiation to a

given optical element as consisting of various modes (m,p) of the same

curvature Ri(z). Both incident and reflected radiation are expanded into

eigenmodes, respectively as follows,

A2(r.) E = A (ri)
m,p MP MP

A°(r)= cn A (r) • (3)
n,q nq nq o

i
The relation among the incident and reflected expansion coefficients c

mp

and c p is written asPq

c0= R c i (4a)

or

C0  =E R mp ci  (4b)nq nq mpm,p

where Rmp are the elements of the reflection matrix R.nq

The radiation profile at the end of the round trip inside the

resonator will relate to the original profile through the resonator

transfer matrix M,

N T2 R2 T2 T1 R1 Ti, (5)

where T. and R are the transmission matrices through the chamber apertures

and the reflection matrices from the mirrors 1 and 2 respectively. The

cavity eigenmodes C. with eigenvalues v. are given by

KcC = c. (6)
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Since M is generally nondiagonal, the eigenmodes are mixtures of vacuum

modes (1).

The electron beam is an active medium that changes the radiation

profile during amplification in each passage. If G is the amplification

matrix, then a steady state exists finally if the matrix equation

G M Cs = gs Cs (7)

has solutions with 1gs = 1. A steady state need not be an eigenmode of

the empty resonator; this could happen only in the case of equal

amplification ga for each eigenmode, i.e., G = ga I where I is the identity

matrix. In an FEL, a different gain is associated with each free space

eigenmode. However, in cases when the off-diagonal elements of both G and

M become vanishingly small, both the resonator modes and the final steady

states approach the pure vacuum modes (1).

In this paper we first study the vacuum performance of the optical

cavity. The detailed cavity mode structure in terms of vacuum modes and the

associated eigenvalues are obtained by numerical diagonalization of the

cavity matrix M. The fractional power loss nj per cavity mode per trip is

found from the magnitude of the eigenvalue

ri =1 - IV11 2. (8)

The profiles for the cavity modes are also obtained utilizing the expansion

coefficients of C. into the vacuum modes. We also examine the eigenmodeJ

structure of the combined gain-transfer matrix G M in cases of small gain.

4



II. TRANSFER MATRIX FOR A SINGLE OPTICAL ELEMENT

The reflection of Gaussian light beams from mirrors was studied in

some detail in Ref. 5 for arbitrary angle of radiation incidence. In the

limit of normal incidence considered here, the reflection matrix elements

are giver by the surface integrals

1 z
2(rS) 1/2

RMP= jd dr r ump(rs 'es) Unq (r s es) b 2 iA(rsS)

nq s s1s 2 ( eIF [ 1:.]1/2 +zs2(r s )5

S +;o2- ]  1+ b'12

o 1

eC q(zs) - i rp(zs) (9)

The mirror surface S is spherical, expressed in the coordinate system

(rses ,zs) with origin located at the mirror center, by

(zs -Rm)2 + rs2 = Rm2 , (10)

where Rm is the mirror radius of curvature. Equation (10) is used to

express zs on the surface S in terms of rs . The mirror boundary is given

by

r2  2 (1
rs

where p i:. the radius of the mirror cross-section.

The phase factor A(r se s), related to the optical path along the

various rays connecting the incoming wavefront with its mirror image

(reflected), must be approximately constant. Therefore, the curvature of

5



the outgoing wavefront is related to the incoming and the mirror curvatures

through

1 2 1
R R R (12)

The Rayleigh length b and the waist location 1 of the outgoing modes are

yet to be determined.

It has been argued5 ,6  that the amount of radiation scattered into

other than the incoming modes, as well as that escaping behind the mirror,

depends on three factors:

(a) Finite mirror size effects, of the order of

1

where p is the mirror cross-section radius and Wi the incoming radiation

spot size.

(b) Spherical aberrati 'n effects, of the order of

i 2

ku1 ( 2  (14)

m
coming from the phase term a(r Ss) inside (9). Spherical aberration

exists even when the mirror curvature matches the radiation curvature. It

is caused by the fact that rays ending on a given spherical wavefront are

not exactly perpendicular to it, since they originated from a finite size

waist and not from a point at the center of curvature.

(c) Surface imperfections, for example, when the reflecting surface

is not perfectly spherical.

Spherical aberration effects are usually less important. They will

be addressed in future work, together with the potentially more important

consequences caused by mirror deformations (buckling) due to heating.

6



Ignoring (b) and (c) amounts to setting L(rs ,e)= 0 in (9). After

substituting expression (2) for the eigenmodes u , (9) becomes,

2i
2 p213 R ct 2+1

R'o')= 6 C mp dE ( a2&)2 & 2 L q( ot 2 L ( ) e 2 (15)nq pq nq fon HI

where Cmp  a [mlnl/(m+p)l(n+q)!] 1/2 and & = 2r 2/W 2 . Since the surface Snq i

has rotational symmetry about the z-axis, it couples modes with the same

poloidal 0 dependence, p = q. The radial integration is carried out in

Appendix A.

In general, the matrix R involves two independent parameters, the

ratio of the mirror radius p to the radiation spot size squared,

P = (p/Wi) 2 , and the ratio of the incoming to outgoing spot sizes

a = (Wi/W ). Only the curvature of the reflected mode is set by the

mirror, while the outgoing spot size is still a free parameter. This can

be exploited by choosing the value V0 that maximizes the coefficient for

the fundamental mode in the reflected radiation, i.e.,

-! = 0 .(16)

act

Once V is selected, the exact location and size of the waist(s) for the0

reflected modes is determined by solving the system of equations

Wo = o  b- 2 ' R 1 2+b 2 (17)
00 0 0

The transmission matrix T through an aperture is given by

T e R, (18)

7



where R is the reflection matrix for a plane mirror (Rm = o) of the same

cross section p, while the curvature transformation is

1 1
R - R. (19)
0 1

Aberration and surface imperfections do not affect transmission through

apertures.

8!



III. CAVITY EIGENMODES

We seek a class of cavity .genmodes with the waist located in the

middle of the vacuum chamber. Since the mode spot must remain unchanged

Vi = W0 during each transmission or reflection we elect a = 1 inside the

transfer matrix (5) for every optical element. The curvature R is not

changed during transmission through an aperture. The mirror curvature,

however, must match the incoming and outgoing r.'iation curvature, R. = R1 o

= Rm in (12). Therefore, for eigenmodes to exist, the equations

R- 2 1 2R2=222(20)L1 b L2+R 1 -L + b2  L 2 L + b2 '(0

must admit a positive solution for b. This is possible when

L 1R 2 ) >0 1 = 
(21)

Equation (21) is the optical stability condition for the cavity. Even

with (21) satisfied the cavity modes will still decay slowly in time

because of the finite size of the mirrors. According to (20), the

Rayleigh length b for various wavelengths remains fixed for a given mirror

112configuration, while the waist w varies as w = (b>./n) . The cross

section of the electron beam is adjustable to give a good filling factor

for the particular wavelength. The cross section of the chamber is oval

1/2
and is approximated with a circular one of effective radius p (plP 2)

where p, and P2 are the major and minor aperture radii.

Because of the imposed axisymmetry, we look for cavity eigenmodes

involving combinations of axisymmetric vacuum modes p = q = 0. The

coefficients cj (n) of the modes unO inside the j-th cavity mode C.

(0) (1) (n)C = i c. , c .. . , . (22)

9



and the corresponding eigenvalues V. are found by numerical3

diagonalization of the transfer matrix M, utilizing expressions (A3) with

= 1 for each individual optical element inside (5). Eventually, the

cavity matrix M depends on the spot to aperture size ratios for the four

optical elements,

MHIjl(X), 112 (X), U3 (X), U4 (X)] , (23)

where in turn pi depends on the wavelength through

X 1/2 Pi

= . nb (1 + L 1/2 (24)

1 L/bL)

Two general conclusions are made. First, it is found that, for

radiation spot sizes smaller than about one third the aperture sizes, the

dominant contribution in each cavity eigenmode comes from a single

(n)
coefficient c. ( . Cavity eigenmodes, in this case, approach pure vacuum3

modes, as expected from the smallness of the off-diagonal matrix elements

in H. Second, if the eigenvalues are arranged according to magnitude,

IvoI > IvI > ... Iv jI> Iv 1+1 ... the largest eigenvalue corresponds to

the eigenmode closest to the fundamental vacuum mode u0 0 , i.e., the

eigenmode with Ico(O)I = 1. The next largest eigenvalue corresponds to

the eigenmode closest to the first radial vacuum mode, i.e., with Ic1(1)

= 1, and so on. This is expected as the rms spot size for the n-th radial

mode uno (r;W) increases with n as (n+1) /2W.

The NIST/NRL oscillator has been designed for eigenmodes of Rayleigh

length equal to half the vacuum chamber length. Two different

arrangements, one with full - , -er atid one with half length wiggler will

be used for the wavelengt 2gimes of 0.2pm to 2pm and 2pm to 10pm

respectively. The design par3- ' rs are b = Lw/ 2 = 107.5cm, L1 = 521cm,

10



L2 = 386cm, R1 = 543cm, R2 = 417cm, P1 = P2 
= 2.54cm for the half wiggler

and b = Lw/2 = 196cm, L1 = 431cm, L2 = 477cm, R1 = 521cm, R2 = 559cm for

the full wiggler.

The fractional power loss rj = 1 - j. 1 2  for the first 5 cavity

eigenmodes of the half wiggler arrangement is plotted in Fig. 2 as a

function of the wavelength X. Through the planned regime of operation the

loss for the fundamental cavity mode never exceeds 1%. The loss factor

for the next two modes is also very small, so that the mode selection is

going to be determined by the differences in the radiation gain for each

mode. In Fig. 3(a) we plot the expansion coefficients cn (0) of the

fundamental cavity mode C0 into the vacuum modes unO. It shows that the

cavity mode profile is very close to a pure u0 0 vacuum mode, with other

modes contributing less than 1%. The expansion coefficients for the

second and third cavity modes are shown in Figs. 3(b) and 3(c)

respectively. If the complete expansion coefficients are written as

c(n) = Ic (n)I exp (iXjn) I

then the complex amplitude for the j-th eigenmode C. is given by3

iI'.(r)

A.(r) = IAj(r)l e

where

JAj(r)I = Arj 2 + Ai 2  1], tj(r) tan -  (Arj / Aij
Su(r Ic(n)I Ai n0( )On

Ar. =E Un0(r) I c j ( cos Xjn Ai = n IcJ ( sin X n

nin



The resulting amplitude profiles for the first three modes at z = 0 are

shown in Fig. 4 for X = 2Pm and X = lOm. In Fig. 5(a) we show the power

fraction .j for the first four cavity modes of Rayleigh length b = Lw/6.

The vacuum expansion coefficients c0 (n) for the fundamental cavity mode

are shown in Fig. 5(b) against the wavelength X. The transverse amplitude

profiles for the first three modes at X = 2.2um and X = 10m respectively

in Figs. 5(c) and 5(d), show considerable departure from vacuum modes.

The cavity eigenmodes for the full wiggler arrangement are extremely

close to vacuum modes and the fractional power losses for the first five

of them are below 10-3 over the frequency regime from 0.5pm to 2um. This

is caused by the combination of a longer Rayleigh length with a spot size

that gets smaller with shorter wavelength.

In case of small gain we can include the effect of the electron beam

on the cavity eigenmodes by introducing the amplitude gain matrix G. In

the linear regime the cross-coupling among various transverse modes is

unimportant and G is diagonal, given by

Gn = g(X) f n 6 mn' (25a)

where

g(X) = 0.5 FN1 -- 2 K 3  (25b)

OR IA o

is the amplitude gain for the fundamental vacuum mode. In Eqs. (25) N is

the number of wiggler periods, y0 is the initial relativistic factor, R =

nw2 is the radiation cross section at the waist, IA = 17x10
3 A, I is the

current in amperes, K = eJBwXw/2nmc 2  is the wiggler parameter, Bw is the

rms magnetic field of the wiggler, Xw is the wiggler wavelength, related

12



to the radiation wavelength X by Xw = 2y2X/(+K 2), FI= J0 (b)-J 1 (b) with b

= K2/2(1+K2) and f is the normalized (to the fundamental) filling factor
n

fn = J dr r j(r) un0(r) / Jdr r j(r) u00(r) , (26)

with the parabolic current profile given by j(r) = j0 (1 - r2/Pb2 ) for r <

Pb' j(r) = 0 for r > Pb' Pb being the beam radius. The round trip gain

for the j-th beam-cavity eigenmode is given by

gi = [ 1 + g(X) I V., (27)

where vi is the eigenvalue for the eigenmode C. of the combined gain-

transfer matrix

N = G N. (28)
g

The fractional power loss )I= 1 - NIJ for the first five eigenmodes is

shown in Fig. 6 as a function of the wavelength, while the expansion

coefficients of the fundamental eigenmode in terms of vacuum modes are

shown in Figs. 7(a)-7(c). The losses for the higher eigenmodes j > 0 are

now considerably higher than the fundamental mode (compare Figs. 2 and 6),

thusly, mode selection among transverse modes occurs through amplification

of the radiation, because of the differences in the filling factor f .

The transverse amplitude profiles at X = 2.2 Um and X = 10 Pm appear in

Figs. 8(a) and 8(b).
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APPENDIX A. Computation of the Reflection Matrix Element

The associated Laguerre polynomials are given by

m (m+p) ! k.
( = (_ 1 )k k (Al)
k=O k!(m-k);(p+k)

Substituting (Al) inside (15) and integrating by factors, using

Sd& & e_& =, e_ [E:0 (- em-k], (A2)

one obtains

RmP(U,M) = 6 [mlnl(m+p)l(n+q)!] 
1 / 2  aP+ m n=q nq 2 p+1 E E c2 ' 12.~

nqc pq k-0 1=0 1

(A3)
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Fig. 3a - Expansion coefficients into vacuum modes for the fundamental cavity eigenmode versus wavelength.
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Fig. 4a - The transverse amplitude profiles IA(r) for the first three axisymmetric cavity modes for
wavelength X = 2 .21Am.
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Fig. 5a - Plots of fractional round trip losses T for the first four eigenmodes versus wavelength where the fun-
damental cavity mode structure has Rayleigh length of b = L,/6 and corresponding mirror curvatures of
R = 523cm and R2 = 389cm.
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Fig. 5b - Plots of expansion coefficients of the fundamental cavity mode in vacuum modes versus wavelength
where the fundamental cavity mode structure has Rayleigh length of b = L,16 and corresponding mirror curva-
tures of R, = 523cm and R2 = 389cm.
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R1 =23cm and R 2 = 389cm.
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Fig. 5d - Plots of transverse profiles for the first three cavity modes at wavelength 10 Am where the funda-
mental cavity mode structure has Rayleigh length of b = 4/6 and corresponding mirror curvatures of
R1 =523cm and R2 = 389cm.
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Fig. 6 - Same as in Fig. 2, including the effects of the beam filling factor for small gain.
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Fig. 7b - Structure of the combined beam-cavity eigenmodes. Same notation as in Fig. 3.
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Fig. 7c - Structure of the combined beam-cavity eigenmodes. Same notation as in Fig. 3.
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Fig. 8a - Profiles of the first three beam-cavity eigenodes. Same notation as in Fig. 4.
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Fig. 8b - Profiles of the first three beam-cavity eigenmodes, Same notation as in Fig. 4.
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